#### [Regular Paper]

## Conversion of CO<sub>2</sub> to Formic Acid Using Silicon Sludge as a Reducing Agent

Jincheng Wu<sup>†1)</sup>, Yusuke Tanimura<sup>†1)</sup>, Danyang Liu<sup>†1)</sup>, Shingo Hasegawa<sup>†1)</sup>, Kousuke Arata<sup>†2)</sup>, Ryosuke Takemura<sup>†2)</sup>, Kazuo Namba<sup>†2)</sup>, and Ken Motokura<sup>\*†1)</sup>

†1) Dept. of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, JAPAN †2) Electric Power Development Co., Ltd., 1 Yanagasaki-machi, Wakamatsu-ku, Kitakyushu 808-0111, JAPAN

(Received April 9, 2025)

Utilizing Si sludge from wafer-production industries for synthesizing value-added chemicals using  $CO_2$  facilitates both the recycling of waste Si and the utilization of  $CO_2$  as a carbon resource. In this study, the reduction of  $CO_2$  to produce formic acid using Si sludge as a reducing agent is reported. Tetrabutylammonium fluoride effectively promotes the reduction. This approach is suitable not only for pure  $CO_2$  but also for the  $CO_2$  present in the exhaust gas from a thermal power plant. Reaction parameters such as  $CO_2$  pressure, temperature, water content, and amount of silicon sludge were optimized. Analyses of the Si sludge before and after the  $CO_2$  reduction reaction were performed using XPS and XRD, which indicated the conversion of the  $Si^0$  phase to  $SiO_2$  in the Si sludge. This is an environmentally friendly and possibly cost-effective approach for formic acid synthesis since  $CO_2$  is converted to formic acid by Si sludge.

#### Keywords

Silicon sludge, Carbon dioxide, Formic acid, Reduction, Fluoride catalyst

#### 1. Introduction

Silicon is widely used in the semiconductor industry. Methods to recycle Si have been extensively explored because of its importance. Chemical recovery methods, such as acid/base dissolution and hydrometallurgical processes, are employed to extract highly pure Si from end-of-life solar cells<sup>1</sup>)~3). Recently, the use of waste Si as a reducing agent has gained considerable attention. This approach has facilitated the conversion of fractured silicon wafers and iron oxide into ferrosilicon alloys<sup>4</sup>). Methods to recycle Si sludges obtained while producing silicon materials, such as silicon wafers, are also highly desirable.

CO<sub>2</sub>, being a major greenhouse gas, significantly influences global climate change. Hence, efficient methods for its capture and conversion are required<sup>5)~7)</sup>. CO<sub>2</sub> transformation using electrocatalytic, photocatalytic, and chemical reduction techniques have been investigated. Currently, CO<sub>2</sub> chemical reduction methods using hydrosilanes and related compounds as reducing

This paper was presented at the Hiroshima Convention of JPI (54th Petroleum-Petrochemical Symposium of Jpn. Petrol. Inst.), Hiroshima, Japan, Nov. 28-29, 2024.

DOI: doi.org/10.1627/jpi.68.170

agents are widely employed, owing to their high efficiency and controllability in CO<sub>2</sub> conversion process (**Fig.** 1) $^{8)\sim18}$ ). Das et al. explored the utilization of hydrosilanes as reducing agents and examined catalysts such as metallic, organocatalysts, and multiphase catalysts to promote the hydrosilylation of CO<sub>2</sub> for the synthesis of valuable C1 chemicals such as formic acid, methanol, and methane<sup>19)</sup>. Parkin et al. investigated the application of hydrosilane in the reduction of CO<sub>2</sub> and explored the conversion of carbon dioxide to valuable C1 chemicals, such as siloxyl formate and methoxy derivatives, under the catalytic action of metal complexes<sup>20)</sup>. In addition, Si-based materials have been employed as  $CO_2$  reducing agents<sup>21)~23)</sup>. Ozin et al. investigated the photothermal catalytic properties of hydride-terminated silicon nanocrystals (ncSi:H) for CO<sub>2</sub>-to-CO conversion, highlighting the potential of Si as an efficient and cost-effective CO reduction material<sup>21)</sup>. Dasog et al. further explored the direct conversion of CO<sub>2</sub> to methanol using porous silicon nanoparticles (Si-NPs) without the need for additional catalysts<sup>23)</sup>. In our previous study, fluoride-catalyzed

Fig. 1 Reduction of  $CO_2$  with Hydrosilane

<sup>\*</sup> To whom correspondence should be addressed.

<sup>\*</sup> E-mail: motokura-ken-xw@ynu.ac.jp

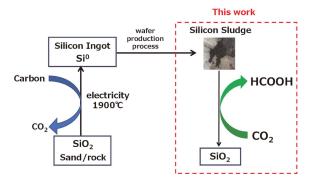



Fig. 2 Waste Si Used as a Reducing Agent of CO<sub>2</sub> in the Si Cycle

 ${
m CO_2}$  reduction reactions using hydrosilane and powdered silicon were investigated, and valuable chemicals such as formic acid and methanol were synthesized<sup>24)~34)</sup>.

Using Si waste from industries (such as silicon wafer production industries) in the reduction of  $CO_2$ , would facilitate the recycling of waste Si as well as the valuable utilization of  $CO_2$ . In addition, zero-valent silicon was prepared from sand  $(SiO_2)$  with large amounts of electricity consumption and  $CO_2$  emissions. The use of waste Si as a reducing agent of  $CO_2$  refers to the recovery of the emitted  $CO_2$  in the Si material cycle (**Fig. 2**).

In this study, formic acid was successfully synthesized from CO<sub>2</sub> using Si sludge recovered from Si wafer production (**Fig. 3**). Key reaction parameters, such as CO<sub>2</sub> pressure, temperature, water content, and silicon sludge loading, were systematically optimized to enhance the conversion efficiency. Pure CO<sub>2</sub> and the CO<sub>2</sub> released from a thermal power plant were used. The silicon sludge before and after the reduction of CO<sub>2</sub> was analyzed using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to assess its composition, oxidation state, and crystal structure. In particular, the impact of SiC impurities was considered. This research not only addresses the problem of Si waste accumulation but also presents an eco-friendly strategy for CO<sub>2</sub> utilization.

#### 2. Experimental

#### 2. 1. Materials

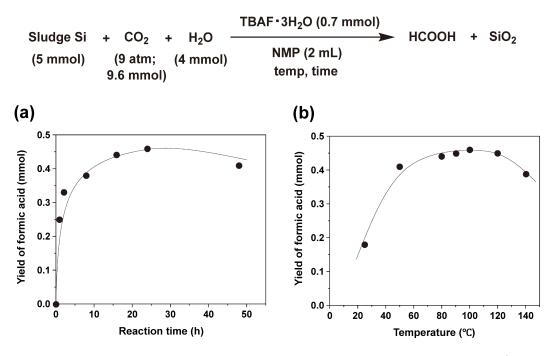
Silicon sludge was generated as a byproduct during wafer preparation. The silicon sludge contains impurities such as Fe(14.9 wt%), Na(9.4), Al(8.3), Cu(6.1), Ca(4.9) K(2.6), Mg(1.5), and other trace metals. Tetrabutylammonium fluoride trihydrate (TBAF·3H<sub>2</sub>O, >99 %) was purchased from Kanto Chemical Co., Inc. Chloroform-d<sub>1</sub> (98 %D) stabilized with silver foil was purchased from Kanto Chemical Co., Inc. *N*-Methyl-2-pyrrolidone (NMP, dehydrated, >99 % pure) was purchased from Kanto Chemical Co., Inc. (used without further purification). Deionized water (H<sub>2</sub>O) was pre-

Fig. 3 Production of Formic Acid from Silicon Sludge

pared in the laboratory. All other materials were purchased from Tokyo Chemical Industry Co., Ltd., Kanto Chemical Co., Inc., and Aldrich Inc. Exhaust gas containing CO<sub>2</sub> (14.0 %CO<sub>2</sub>-5.0 %O<sub>2</sub>-N<sub>2</sub> bal.) was supplied by the Isogo thermal power plant (coal-fired), Electric Power Development Co., Ltd.

#### 2. 2. Analytical Methods

<sup>1</sup>H nuclear magnetic resonance (NMR) spectra were acquired in CDCl3 using a JEOL RESONANCE ECA 500 spectrometer (operating at 500 MHz for <sup>1</sup>H) or an ECX 400 spectrometer (operating at 400 MHz for <sup>1</sup>H). XPS analyses were conducted on a ULVAC-PHI Quantera-SXM system with an Al X-ray source (pass energy = 55.0 eV). The Al K $\alpha$  X-ray source operated at 50.2 W and 14 kV with a beam size of 200 µm was used, and excess charges on samples were neutralized through argon-ion sputtering. The analysis chamber maintained a working pressure below  $1 \times 10^{-7}$  Pa, with spectra collected in the C 1s, Si 2p. The XPS elemental peaks were referenced to the C 1s position at 284.8 eV. Powder XRD patterns were generated using a Rigaku Ultima IV diffractometer with Cu Kα radia-Gas phase products were analyzed by gas-chromatography with barrier discharge ionization detector (GC-BID) using Shimadzu GC-2010Plus instrument with a micropacked ST (SHINCARBON) column.


#### 2. 3. Typical Procedure for Fluoride-catalyzed CO<sub>2</sub> Reduction with Si Sludge Powder and H<sub>2</sub>O

Stainless steel autoclave was used as the reactor. 0.14 g of powdered Si sludge was placed in the reactor. A mixture of the catalyst (TBAF·3H<sub>2</sub>O, 0.70 mmol), solvent (NMP, 2 mL), and a specific amount of deionized water (4 mmol) was prepared in a separate vial and transferred into the reactor. Subsequently, a reaction gas (CO<sub>2</sub> at 0.9 MPa) was introduced. The resulting mixture was vigorously stirred at 100 °C for 24 h. The reaction products were identified using <sup>1</sup>H NMR spectrometry. The internal standard method was used to determine the yield of formic acid using liquid <sup>1</sup>H NMR in CDCl<sub>3</sub> (internal standard: 1,3,5-triisopropylbenzene). The quantitative relationship between the <sup>1</sup>H NMR peak area of formic acid and that of the internal standard was validated using standard samples. The gas phase products, such as CO and H<sub>2</sub>, in the reactor were qualitatively and quantitatively analyzed by GC-BID.

#### 3. Results and Discussion

#### 3. 1. Optimization of Reaction Conditions

TBAF (a homogeneous catalyst in NMP) facilitated



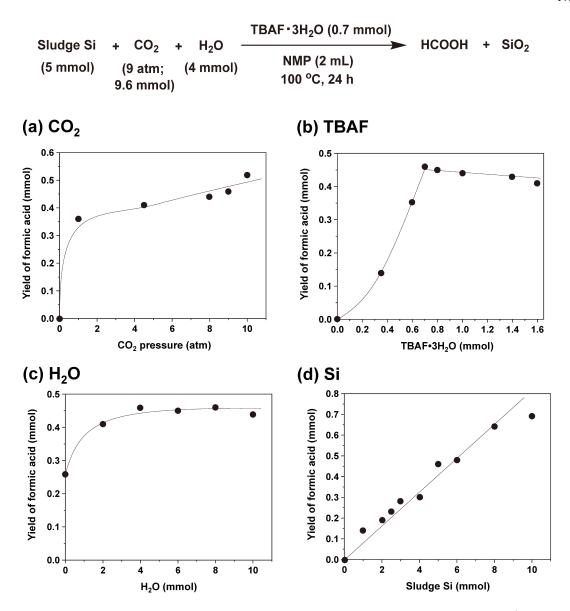

Basic conditions: Si (5.0 mmol), CO<sub>2</sub> (9 atm; 9.6 mmol), H<sub>2</sub>O (4.0 mmol), TBAF-3H<sub>2</sub>O (0.7 mmol), NMP (2 mL), 100 °C, and 24 h.

Fig. 4 (a) Time-course of the CO<sub>2</sub> Reduction with Sludge Si and (b) Effect of Reaction Temperature on the CO<sub>2</sub> Reduction

the reaction of sludge Si and CO<sub>2</sub>. Formic acid (HCOOH) was the only carbon-derived product under the optimized conditions in liquid phase (100 °C, 24 h). A previous report on the reaction using <sup>13</sup>C-enriched CO<sub>2</sub> (<sup>13</sup>CO<sub>2</sub>) clearly indicated that the produced HCOOH originated from CO<sub>2</sub><sup>32</sup>). Time-course of the CO<sub>2</sub> reduction is illustrated in **Fig. 4(a)**. The yield of formic acid increased rapidly during the initial 1-10 h and reached the maximum at 24 h (0.46 mmol). We also analyzed the gas phase after the reaction, and the formation of small amounts of CO  $(9.7 \times 10^{-2} \text{ mmol})$ and H<sub>2</sub> (0.11 mmol) was detected. These values are much smaller than formic acid, indicating selective reduction of CO2 to formic acid under the reaction conditions. Theoretically, one silicon atom produces two formic acid molecules from two CO<sub>2</sub> molecules. However, the formic acid amount was 0.46 mmol, and the reaction was stopped. This low productivity of formic acid is probably due to the low content of pure Si(0) in the silicon sludge. This is also supported by the high reactivity of fresh silicon powder<sup>32)</sup>. Next, the impact of varying the reaction temperature on the production of formic acid was analyzed (Fig. 4(b)). The maximum formic acid yield (0.46 mmol) was attained at 100 °C. The decrease in the amount of formic acid at higher temperatures could be due to the promotion of side reactions or a decrease in catalyst performance due to decomposition. Based on these results, subsequent optimization experiments were conducted at 100 °C for 24 h.

The effect of the pressure/loading amount of the substrate or catalyst on the formic acid yield is illustrated in Fig. 5. Figure 5(a) exhibits a significant increase in formic acid (HCOOH) production with the increase in CO<sub>2</sub> pressure, indicating that the reaction rate is affected by the CO<sub>2</sub> activation step. At low pressures  $(0-2 \text{ bar}, 1 \text{ bar} = 1 \times 10^5 \text{ Pa})$ , the increase in the HCOOH yield was moderate, while a more substantial improvement was evident at higher pressures (8-10 bar). The CO<sub>2</sub> concentration could have affected the pH of the solution and increased the reaction rate; however, the details remain unclear. Figure 5(b) illustrates the effect of the quantity of the TBAF·3H<sub>2</sub>O catalyst on the catalytic conversion of CO<sub>2</sub> into formic acid. Initially, the yield increases; the highest value is attained at 0.46 mmol of formic acid with 0.7 mmol of TBAF·3H<sub>2</sub>O. The amount of formic acid formed was less than that of the TBAF, however, in the case of fresh silicon, more than 0.5 mmol of formic acid was obtained with only 0.05 mmol of TBAF<sup>32)</sup>. The reason in the lower formic acid amount with silicon sludge is thought to be (i) the lower reactivity of silicon sludge than fresh silicon powder and/or (ii) deactivation of TBAF by impurity in the sludge. The findings of our previous study indicate the catalytic role of TBAF: activation of Si-Si bond of silicon to form Si-H species<sup>35)</sup> that react with CO<sub>2</sub><sup>32)</sup>. Above 0.7 mmol, the yield of HCOOH remained almost stable.

The effect of the quantity of  $H_2O$  on the formic acid yield is illustrated in Fig. 5(c). Initially, as the quanti-



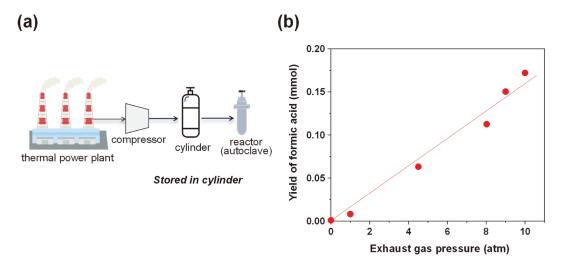

 $Basic\ conditions:\ Si\ (5.0\ mmol),\ CO_{2}\ (9\ atm;\ 9.6\ mmol),\ H_{2}O\ (4.0\ mmol),\ TBAF-3H_{2}O\ (0.7\ mmol),\ NMP\ (2\ mL),\ 100\ ^{\circ}C,\ and\ 24\ h.Co.$ 

Fig. 5 Effect of (a) CO<sub>2</sub> Pressure, (b) TBAF Amount, (c) H<sub>2</sub>O Amount, and (d) Si Amount on the Yield of Formic Acid in the CO<sub>2</sub> Reduction Reaction

ty of H<sub>2</sub>O increased, the formic acid yield increased to 0.46 mmol, after which it became stable. Although H<sub>2</sub>O acted as a proton source, more than 4.0 mmol of H<sub>2</sub>O was sufficient to facilitate the protonation during CO<sub>2</sub> reduction. **Figure 5(d)** shows the effect of the amount of Si on formic acid production. A strong positive correlation is evident between the Si content and HCOOH yield, suggesting that saturation of formic acid yield around 0.46 mmol (**Figs. 5(a)-5(c)**) was due to the complete consumption of the reducing agent Si. No saturation point was observed within the examined range (0-10 mmol), suggesting that further increase in the Si content would increase the formic acid yield.

Figure 6(a) illustrates the method used to acquire

actual exhaust gas from a thermal power plant, obtained for use in the reaction with Si. The compressed exhaust gas was stored in a gas cylinder. **Figure 6(b)** illustrates the effect of the exhaust gas pressure on formic acid production. Surprisingly, formic acid formation was observed even in the exhaust gas containing  $CO_2$  in the presence of the Si sludge. Increasing the exhaust gas pressure positively affects the conversion to formic acid (HCOOH), suggesting that increased pressure can increase the concentration (partial pressure) of  $CO_2$ , thereby increasing the reaction rate. For the  $CO_2$  concentration observed in the exhaust gas from the thermal power plant (14 vol%), the  $CO_2$  partial pressure at 8 atm of total gas should have been 1.1 atm (1 atm =

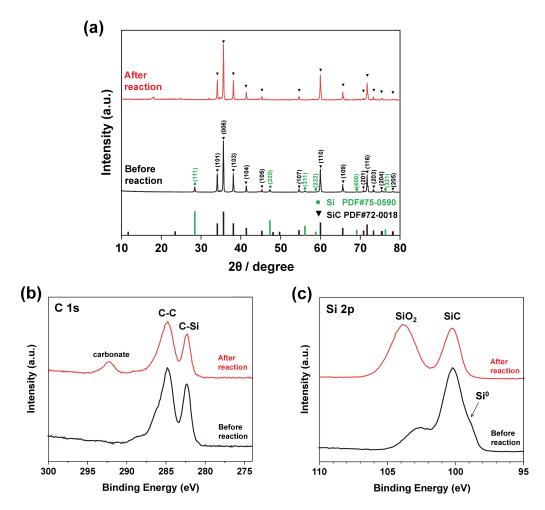


Reaction conditions: Si (5.0 mmol), exhaust gas (0-10 atm),  $H_2O$  (4.0 mmol),  $TBAF\text{-}3H_2O$  (0.7 mmol), NMP (2 mL),  $100 \,^{\circ}C$ , and 24 h.

Fig. 6 (a) Exhaust-gas Sample Extraction from a Thermal Power Plant; Stored in a Gas Cylinder, (b) Effect of Exhaust Gas Pressure on Formic Acid Yield from CO<sub>2</sub> Reduction

101325 Pa). However, the amount of formic acid formed (ca. 0.12 mmol) was lower than that of 1 atm of pure  $CO_2$  (0.35 mmol, **Fig. 5(a)**); this could have been due to the oxidation of Si in the presence of  $O_2$  (5 vol% in the exhaust gas)<sup>36)</sup>. The type of catalyst and/or reaction system should be further improved to enhance the reactivity of  $CO_2$  in the exhaust gas.

# 3. 2. Characterization of Silicon Sludge before and after the CO<sub>2</sub> Reduction


Figure 7(a) illustrates the XRD patterns of the Si sludge before and after the reaction. Initially, the sample displays both Si (Si<sup>0</sup>, PDF#75-0590) and SiC (PDF#72-0018) diffraction peaks. Silicon carbide could have formed during the silicon wafer cutting process performed using a carbon-wire saw. Following the reaction, the peaks assigned to Si<sup>0</sup> disappeared (suggesting a reaction between Si<sup>0</sup> and CO<sub>2</sub>), while those corresponding to SiC remained. Figure 7(b) depicts the XPS images of the C 1s region, elucidating the changes in the carbon chemical states pre- and post-reaction. Before the reaction, the C 1s spectrum displays a peak at approximately 282.5 eV, thereby confirming the presence of silicon carbide (SiC) in the sample<sup>37)</sup>. The SiC peak remained even after the reaction. Figure 7(c) presents the evolution of the chemical states of Si before and after the reaction using XPS. A strong signal at approximately 100 eV is observed before reaction. Combining the XRD and C 1s XPS analyses, this peak can be assigned to both SiC (100 eV)<sup>37)</sup> and Si<sup>0</sup> (99 eV). The broad signal at approximately 102 eV might be due to  $SiN_x$  (frequently coated material on silicon surfaces). Following the reaction, the shoulder signal at approximately 99 eV (Si<sup>0</sup>) disappeared, along with the appearance of the SiO2 signal at approximately 103 eV. These results indicate that during the reactions, the  $\mathrm{Si^0}$  phase acts as a reducing agent of  $\mathrm{CO_2}$  conversion, while the  $\mathrm{SiC}$  phase remains intact. **Figure 8** illustrates the image of  $\mathrm{CO_2}$  reduction to produce formic acid using silicon sludge containing both  $\mathrm{Si^0}$  and  $\mathrm{SiC}$  phases.

#### 4. Conclusion

This study demonstrated the potential of the sludge-derived Si as a reducing agent for CO<sub>2</sub> conversion to formic acid, providing a sustainable approach to repurposing industrial waste. Optimization of the reaction conditions identified the optimal fluoride catalyst dosage (0.7 mmol), CO<sub>2</sub> pressure (10 bar), reaction time (24 h), and water content (4 mmol) for maximizing the formic acid yield. Increasing the sludge Si quantity was found to enhance conversion efficiency directly. Characterization of the silicon sludge before and after catalysis using XPS and XRD revealed that the Si<sup>0</sup> phase was selectively oxidized to SiO<sub>2</sub> during CO<sub>2</sub> reduction, suggesting the role of the reducing agent Si<sup>0</sup>, while the SiC phase remained unaltered. Although sludge Si exhibited lower reactivity compared to fresh Si<sup>32)</sup>, its effective utilization through optimization highlights its potential in scalable CO<sub>2</sub> valorization.

#### Acknowledgment

This research was financially supported by JST-ALCA-Next (Grant No. JPMJAN23C7), JSPS KAKENHI (Grant No. JP23K23131, JP25K01578), Carbon Recycling Fund Institute, and the Yazaki Memorial Foundation for Science and Technology.



 $Reaction\ conditions;\ Si\ (5.0\ mmol),\ CO_{2}\ (9\ atm),\ H_{2}O\ (4.0\ mmol),\ TBAF-3H_{2}O\ (0.7\ mmol),\ NMP\ (2\ mL),\ 100\ ^{\circ}C,\ and\ 24\ h.$ 

Fig. 7 (a) XRD Patterns and XPS, (b) C 1s and (c) Si 2p Spectra of Si Sludge before and after CO<sub>2</sub> Reduction

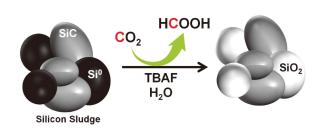



Fig. 8 Image of  ${\rm CO_2}$  Reduction to Produce Formic Acid Using Silicon Sludge

#### References

- Radziemska, E., Ostrowski, P., Cienian, A., Sawczak, M., Ecol. Chem. Eng. S., 17, (3), 385 (2010).
- 2) Preet, S., Smith, S. T., J. Clean. Prod., 448, 141661 (2024).
- Klugmann-Radziemska, E., Kuczyńska-Łażewska, A., Sol. Energy Mater. Sol. Cells., 205, 110259 (2020).
- Blaesing, L., Walnsch, A., Hippmann, S., Modrzynski, C., Weidlich, C., Pavón, S., Bertau, M., ACS Sustainable Resour.

- Manage., 1, (3), 404 (2024).
- 5) González, T., García, J. J., Polyhedron, 203, 115242 (2021).
- Sakakura, T., Choi, J. C., Yasuda, H., Chem. Rev., 107, (6), 2365 (2007).
- De Luna, P., Hahn, C., Higgins, D., Jaffer, S. A., Jaramillo, T. F., Sargent, E. H., Science, 364, (6438), eaav 3506 (2019).
- Fernández-Alvarez, F. J., Aitani, A. M., Oro, L. A., Catal. Sci. Technol., 4, (3), 611 (2014).
- Iglesias, M., Fernández-Alvarez, F. J., Oro, L. A., Coord. Chem. Rev., 386, 240 (2019).
- Takaya, J., Iwasawa, N., J. Am. Chem. Soc., 139, (17), 6074 (2017).
- 11) Fiorani, G., Guo, W., Kleij, A. W., Green Chem., 17, (3), 1375 (2015).
- 12) Huang, W., Roisnel, T., Dorcet, V., Orione, C., Kirillov, E., *Organometallics*, **39**, (5), 698 (2020).
- Frogneux, X., Jacquet, O., Cantat, T., Catal. Sci. Technol., 4, (6), 1529 (2014).
- He, W., Li, B., Li, Y., Liu, X., Cui, D., Angew. Chem. Int. Ed., 64, (3), e202415626 (2025).
- Naváez, W. E. V., Vera de la Garza, C. G., Fomine, S., *Phys. Chem. Chem. Phys.*, 25, (22), 15287 (2023).
- Chen, H., Gao, J., Zhao, Y., Chem. Commun., 61, (9), 1870 (2025).
- 17) Pramudita, R. A., Motokura, K., Green Chem., 20, (21), 4834

(2018).

- Pramudita, R. A., Motokura, K., ChemSusChem, 14, (1), 281 (2021).
- Zhang, Y., Zhang, T., Das, S., Green Chem., 22, (6), 1800 (2020).
- Ruccolo, S., Amemiya, E., Shlian, D. G., Parkin, G., Can. J. Chem., 99, (2), 259 (2021).
- Sun, W., Qian, C., He, L., Ghuman, K. K., Wong, A. P., Jia, J.,
   Ozin, G. A., *Nat. Commun.*, 7, (1), 12553 (2016).
- 22) Yang, T. C., Chang, F. C., Peng, C. Y., Wang, H. P., Wei, Y. L., Environ. Technol., 36, (23), 2987 (2015).
- Dasog, M., Kraus, S., Sinelnikov, R., Veinot, J. G. C., Rieger, B., Chem. Commun., 53, (21), 3114 (2017).
- Motokura, K., Naijo, M., Yamaguchi, S., Miyaji, A., Baba, T., *Chem. Lett.*, 44, (11), 1464 (2015).
- Motokura, K., Nakagawa, C., Pramudita, R. A., Manaka, Y., ACS Sustain. Chem. Eng., 7, (13), 11056 (2019).
- Pramudita, R. A., Manaka, Y., Motokura, K., Chem. Eur. J., 26, (35), 7937 (2020).
- Motokura, K., Pramudita, R. A., Chem. Rec., 19, (7), 1199
- 28) Motokura, K., Kashiwame, D., Miyaji, A., Baba, T., Org. Lett.,

- **14**, (10), 2642 (2012).
- Motokura, K., Naijo, M., Yamaguchi, S., Miyaji, A., Baba, T., Chin. J. Catal., 38, (3), 434 (2017).
- Motokura, K., Naijo, M., Yamaguchi, S., Miyaji, A., Baba, T., *Chem. Lett.*, 44, (9), 1217 (2015).
- 31) Motokura, K., Takahashi, N., Miyaji, A., Sakamoto, Y., Yamaguchi, S., Baba, T., *Tetrahedron*, **70**, (39), 6951 (2014).
- 32) Pramudita, R. A., Nakao, K., Nakagawa, C., Wang, R., Mochizuki, T., Takato, H., Motokura, K., *Energy Adv.*, 1, (6), 385 (2022).
- 33) Wang, R., Nakao, K., Manaka, Y., Motokura, K., Commun. Chem., 5, (1), 150 (2022).
- Motokura, K., Nakao, K., Manaka, Y., Asian J. Org. Chem., 11, (10), e202200230 (2022).
- Shiroshita, T., Hasegawa, S., Tanimura, Y., Kikuchi, A., Motokura, K., ACS Sustainable Chem. Eng., 13, (22), 8331 (2025).
- 36) Motokura, K., Sasaki, Y., Tanimura, Y., Shiroshita, T., Hasegawa, S., Arata, K., Takemura, R., Namba, K., Manaka, Y., ACS Sustainable Resour. Manage., 2, (7), 1220 (2025).
- 37) Miyoshi, K., Buckley, D. H., Appl. Surf. Sci., 10, 357 (1982).

.....

#### 要 旨

#### シリコンスラッジを還元剤とする二酸化炭素のギ酸への変換

呉 金城 $^{\dagger 1}$ ),谷村 勇亮 $^{\dagger 1}$ ),劉 丹陽 $^{\dagger 1}$ ),長谷川 慎吾 $^{\dagger 1}$ ), 荒田 浩輔 $^{\dagger 2}$ ),竹村 亮介 $^{\dagger 2}$ ),難波 一夫 $^{\dagger 2}$ ),本倉 健 $^{\dagger 1}$ )

†1) 横浜国立大学大学院理工学府,240-8501 横浜市保土ヶ谷区常盤台79-5

†2) 電源開発(株)技術開発部若松研究所,808-0111 北九州市若松区柳崎町1番

シリコンウエハ製造工程で排出されるシリコンスラッジを $CO_2$ から高付加価値化合物への合成に活用することで、廃棄ケイ素と $CO_2$ の有効利用を同時に実現できる。本研究では、シリコンスラッジを還元剤とする $CO_2$ のギ酸への変換反応を報告する。フッ化テトラブチルアンモニウムがこの反応を促進した。この手法は、純粋な $CO_2$ だけでなく、火力発電所からの排ガス中に含まれる $CO_2$ の変換反応にも適用可能である。 $CO_2$ 

圧力,反応温度,添加する水量,シリコンスラッジ量等の反応パラメーターの最適化を実施するとともに,反応前後のシリコンスラッジを XPS と XRD で解析し,シリコンスラッジ中の  $\mathrm{Si}^0$ が  $\mathrm{SiO}_2$ へと転化することを確認した。廃棄シリコンスラッジを活用して  $\mathrm{CO}_2$ をギ酸へと変換する本手法は,環境調和型かつ経済的にも有利なギ酸合成法となる可能性がある。

.....

### CC BY-NC-ND

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license. https://creativecommons.org/licenses/by-nc-nd/4.0/